Длина волны ультрафиолетовых лучей равна

Содержание

УФ-излучение, бактерицидная и кварцевая лампа

Длина волны ультрафиолетовых лучей равна
В современных медицинских приборах и устройствах, как и прежде, активно применяются ультрафиолетовые лампы. Наиболее массово в медицинской технике применяется бактерицидное УФ-излучение.

В процессе работы с клиентами нашим специалистам доводилось не раз давать краткие пояснения по общему принципу работы бактерицидного ультрафиолетового излучения.

В настоящем материале мы собрали общедоступную информацию, которая позволит сэкономить нам время на подобных разъяснениях, а заинтересованным – получить общее представление о предмете.

В Википедии есть доступное пояснение, что такое УФ-излучение.

Выдержку из этого описания приводим ниже.

Ультрафиоле́товое излуче́ние (ультрафиолетовые лучи, УФ-излучение) – электромагнитное излучение, занимающее спектральный диапазон между видимым и рентгеновским излучениями. Длины волн УФ-излучения лежат в интервале от 10 до 400 нм (7,5•1014—3•1016 Гц). Термин происходит от лат. ultra — сверх, за пределами и фиолетовый.

Электромагнитный спектр ультрафиолетового излучения может быть по-разному поделен на подгруппы. Стандарт ISO по определению солнечного излучения (ISO-DIS-21348) даёт следующие определения:

Наименование Длина волны в нанометрах Количество энергии на фотон Аббревиатура
Ближний400—300 нм3,10—4,13 эВNUV
Ультрафиолет А, длинноволновой диапазон400—315 нм3,10—3,94 эВUVA
Средний300—200 нм4,13—6,20 эВMUV
Ультрафиолет B, средневолновой315—280 нм3,94—4,43 эВUVB
Дальний200—122 нм6,20—10,2 эВFUV
Ультрафиолет С, коротковолновой280—100 нм4,43—12,4 эВUVC
Экстремальный121—10 нм10,2—124 эВEUV, XUV

Ближний ультрафиолетовый диапазон часто называют «чёрным светом», так как он не распознаётся человеческим глазом, но при отражении от некоторых материалов спектр переходит в область видимого излучения вследствие явления фотолюминесценции. Для дальнего и экстремального диапазона часто используется термин «вакуумный» (VUV), в виду того, что волны этого диапазона сильно поглощаются атмосферой Земли. ——————————————————————————————————————————-

В приборах медицинского назначения чаще прочих используется бактерицидное УФ излучение. При этом не стоит забывать, что и иные диапазоны УФ излучения нашли своё широкое применение в мед. оборудовании. Например, для терапевтических целей, или для фотокатализа. На описании бактерицидное УФ излучение остановимся подробнее.

——————————————————————————————————————————- Ультрафиолетовые лампы используются для обеспложивания (обеззараживания) воды, воздуха и различных поверхностей во всех сферах жизнедеятельности человека. Полной стерилизации от микроорганизмов при помощи УФ-излучения добиться невозможно – оно не действуют на некоторые бактерии, многие виды грибов и прионы. В наиболее распространённых лампах низкого давления почти весь спектр излучения приходится на длину волны 253,7 нм, что хорошо согласуется с пиком кривой бактерицидной эффективности (то есть эффективности поглощения ультрафиолета молекулами ДНК). Этот пик находится в районе длины волны излучения равной 253,7 нм, которое оказывает наибольшее влияние на ДНК, однако природные вещества (например, вода) задерживают проникновение УФ. Бактерицидное УФ-излучение на этих длинах волн вызывает димеризацию тимина в молекулах ДНК. Накопление таких изменений в ДНК микроорганизмов приводит к замедлению темпов их размножения и вымиранию. Ультрафиолетовые лампы с бактерицидным эффектом в основном используются в таких устройствах, как бактерицидные облучатели и бактерицидные рециркуляторы. ——————————————————————————————————————————- Стандартная УФ-лампа представляет собой колбу с газом, на концах которой находятся электроды. В момент подачи напряжения возникает электрическая дуга, которая испаряет ртуть. Именно ртуть в газообразном состоянии и становится источником световой энергии. Изготавливается большинство УФ-ламп из дорогого и качественного материала – кварца. Он обеспечивает проницаемость лампы, что необходимо для нее в первую очередь. Надежность и длительный срок эксплуатации лампы зависит от качества использованных при изготовлении компонентов электрода. На концах УФ-лампы находится фольга молибдена с элементами платины. Это помогает лампе работать при очень высоких температурах.

Бактерицидная лампа – электрическая ртутная газоразрядная лампа низкого давления с колбой из увиолевого стекла или другого материала, обеспечивающего заданный спектр пропускания ультрафиолетового излучения. Ультрафиолетовое излучение обладает обеззараживающими свойствами, которые и дали название лампе.

В бактерицидных лампах спектр ультрафиолетового излучения подбирают так чтобы минимизировать образование озона и вредное воздействие на кожу и глаза путем вырезания из спектра излучения лампы жесткого ультрафиолета. Стараются оставить только спектральную линию мягкого ультрафиолета с длиной волны 253,7 нм.

Такие лампы называют ещё «безозоновыми» благодаря минимизации образования озона. Этим бактерицидные лампы отличаются от кварцевой лампы, в которой кварцевая колба не задерживает жесткий ультрафиолет. После кварцевания бактерицидной лампой проветривать помещение не обязательно, в отличие от кварцевой лампы.

Бактерицидные лампы используются для обеззараживания воздуха и поверхностей в помещении, дезинфекции питьевой воды, стерилизации предметов и медицинских инструментов. Нейтрализуют основную часть микроорганизмов таких, как вирусы, бактерии, плесень, грибки, дрожжи, споры и др.

Бактерицидные лампы применяются в различных устройствах таких, как бактерицидные облучатели, бактерицидные рециркуляторы, приборы для дезинфекции воды и т. д.
При работе с бактерицидными лампами следует помнить об опасности ультрафиолета для зрения и кожи.

Кварцевая лампа – электрическая ртутная газоразрядная лампа с колбой из кварцевого стекла, предназначенная для получения ультрафиолетового излучения. Изредка кварцевой лампой называют мощную лампу накаливания с колбой из термостойкого кварца, однако в настоящее время такие лампы обычно выполняются газонаполненными и чаще именуются галогеновыми.

Ртутно-кварцевая лампа представляет собой газоразрядную лампу с добавлением ртути и предназначена для излучения ультрафиолетовых лучей. Применяются такие лампы для обеззараживания помещений, предметов, продуктов питания, в медицине. Бактерицидные лампы — газоразрядные лампы для дезинфекции помещений, иногда неправильно называемые «кварцевыми». Колбы таких ламп изготавливаются из увиолевого стекла. Существуют и так называемые «безозоновые» лампы, с покрытием из оксида титана, не пропускающим лучи с длиной волны менее 257 нм. ——————————————————————————————————————————-

  Применительно к предлагаемому нашей компанией оборудованию – облучателям бактерицидным, а так же рециркуляторам воздуха закрытого типа с применением этих ламп, в первую очередь речь идёт об источнике УФ-излучения в виде бактерицидной лампы.

В повседневной работе мы часто сталкиваемся с тем, что заказчики бактерицидные лампы называют кварцевыми. На практике, процесс обеззараживания помещений называют просто –кварцевание.

Именно по этому, часто в запросах заказчик не делает различий, какие лампы ему нужны, бактерицидные или кварцевые.

——————————————————————————————————————————-

  Определение «Кварцевание», как его трактует Википедия:

'Кварцевание' — процесс обработки (обеззараживания) помещений, предметов, тела человека ультрафиолетовым излучением кварцевой или бактерицидной лампы. Употребление термина “кварцевание” неверное (парадокс), ибо колба лампы состоит из кварцевого стекла и во время работы кристаллы кварца не распыляются по помещению. Кварцевое стекло только пропускает ультрафиолетовое излучение, что невозможно у обычного силикатного стекла. Также подразумевается инактивация в воздухе и на поверхностях всех инфекционных микроорганизмов таких, как вирусы, бактерии, плесень, грибки, дрожжи, споры и др. Это достигается путем поглощения дозы ультрафиолетового излучения молекулами ДНК микробов и приводит к их немедленной гибели. Кварцевания можно разделить на группы: Кварцевание воздуха и поверхностей в помещении. Кварцевание предметов, стерилизация медицинских инструментов. Общее кварцевание – все тело человека. Локальное (местное) кварцевание – отдельные участки тела (ухо-горло-нос, кожа). В результате кварцевания воздух обогащается озоном, который, в свою очередь, также дезинфицирует воздух. Озон ядовит, поэтому после кварцевания помещение следует проветривать. При правильном соблюдении режима использования лампы кварцевание вреда не несёт. При неправильном использовании может привести к ожогу глаз. Кварцевание широко применяется в медицинских учреждениях, также в настоящее время оно стало популярным и для использования в домашних условиях. Во время работы кварцевой лампы следует покинуть помещение.

Вернуться в рубрику “Информация для покупателя, общая и справочная”

Источник: https://grand-sp.ru/products/276/2288/

Ультрафиолетовое излучение – Физика

Длина волны ультрафиолетовых лучей равна
Ультрафиоле́товое излуче́ние (ультрафиолет, УФ, UV) — электромагнитное излучение, занимающее диапазон между фиолетовой границей видимого излучения и рентгеновским излучением (380 — 10 нм, 7,9×1014 — 3×1016 Гц).

Диапазон условно делят на ближний (380—200 нм) и дальний, или вакуумный (200-10 нм) ультрафиолет, последний так назван, поскольку интенсивно поглощается атмосферой и исследуется только вакуумными приборами.

Биологические эффекты ультрафиолетового излучения в трёх спектральных участках существенно различны, поэтому биологи иногда выделяют, как наиболее важные в их работе, следующие диапазоны:

  • Ближний ультрафиолет, УФ-A лучи (UVA, 315—400 нм)
  • УФ-B лучи (UVB, 280—315 нм)
  • Дальний ультрафиолет, УФ-C лучи (UVC, 100—280 нм)

Практически весь UVC и приблизительно 90 % UVB поглощаются озоном, а также водным паром, кислородом и углекислым газом при прохождении солнечного света через земную атмосферу. Излучение из диапазона UVA достаточно слабо поглощается атмосферой. Поэтому радиация, достигающая поверхности Земли, в значительной степени содержит ближний ультрафиолет UVA и в небольшой доле — UVB.

Природные источники

Основной источник ультрафиолетового излучения на Земле — Солнце. Соотношение интенсивности излучения УФ-А и УФ-Б, общее количество ультрафиолетовых лучей, достигающих поверхности Земли, зависит от следующих факторов:

  • от концентрации атмосферного озона над земной поверхностью
  • от высоты Солнца над горизонтом
  • от высоты над уровнем моря
  • от атмосферного рассеивания
  • от состояния облачного покрова
  • от степени отражения УФ-лучей от поверхности (воды, почвы)

Благодаря созданию и совершенствованию искусственных источников УФ излучения, шедшими параллельно с развитием электрических источников видимого света, сегодня специалистам, работающим с УФ излучением в медицине, профилактических, санитарных и гигиенических учреждениях, сельском хозяйстве и т. д.

, предоставляются существенно большие возможности, чем при использовании естественного УФ излучения. Разработкой и производством УФ ламп для установок фотобиологического действия (УФБД) в настоящее время занимаются ряд крупнейших электроламповых фирм (Philips, Osram, LightTech, Radium, Sylvania и др.).

В России известны производители УФ ламп для УФБД: ОАО «Лисма-ВНИИИС» (Саранск), НПО «ЛИТ» (Москва), ОАО СКБ «Ксенон» (Зеленоград), ООО «ВНИСИ» (Москва). Номенклатура УФ ламп для УФБД весьма широка и разнообразна: так, например, у ведущего в мире производителя фирмы Philips она насчитывает более 80 типов.

В отличие от осветительных УФ источники излучения, как правило, имеют селективный спектр, рассчитанный на достижение максимально возможного эффекта для определенного ФБ процесса.

Классификация искусственных УФ ИИ по областям применения, детерминированным через спектры действия соответствующих ФБ процессов с определенными УФ диапазонами спектра:

  • Эритемные лампы (ЛЭЗО, ЛЭР40) были разработаны в 60-х годах прошлого века для компенсации «УФ недостаточности» естественного излучения и, в частности, интенсификации процесса фотохимического синтеза витамина D3 в коже человека («антирахитное действие»).

В 70-80 годах эритемные ЛЛ, кроме медицинских учреждений, использовались в специальных «фотариях» (например, для шахтеров и горных рабочих), в отдельных ОУ общественных и производственных зданий северных регионов, а также для облучения молодняка сельскохозяйственных животных.

Спектр ЛЭ30 радикально отличается от солнечного; на область В приходится большая часть излучения в УФ области, излучение с длиной волны λ < 300нм, которое в естественных условиях вообще отсутствует, может достигать 20 % от общего УФ излучения.

Обладая хорошим «антирахитным действием», излучение эритемных ламп с максимумом в диапазоне 305—315 нм оказывает одновременно сильное повреждающее воздействие на коньюктиву (слизистую оболочку глаза).

Отметим, что в номенклатуре УФ ИИ фирмы Philips присутствуют ЛЛ типа TL12 с предельно близкими к ЛЭ30 спектральными характеристиками, которые наряду с более «жесткой» УФ ЛЛ типа TL01 используются в медицине для лечения фотодерматозов.

Диапазон существующих УФ ИИ, которые используются в фототерапевтических установках, достаточно велик; наряду с указанными выше УФ ЛЛ, это лампы типа ДРТ или специальные МГЛ зарубежного производства, но с обязательной фильтрацией УФС излучения и ограничением доли УФВ либо путем легирования кварца, либо с помощью специальных светофильтров, входящих в комплект облучателя.

  • В странах Центральной и Северной Европы, а также в России достаточно широкое распространение получили УФ ОУ типа «Искусственный солярий», в которых используются УФ ЛЛ, вызывающие достаточно быстрое образование загара. В спектре «загарных» УФ ЛЛ преобладает «мягкое» излучение в зоне УФА Доля УФВ строго регламентируется, зависит от вида установок и типа кожи (в Европе различают 4 типа человеческой кожи от «кельтского» до «средиземноморского») и составляет 1-5 % от общего УФ излучения. ЛЛ для загара выпускаются в стандартном и компактном исполнении мощностью от 15 до 160 Вт и длиной от 30 до 180 см.
  • В 1980 г. американский психиатр Альфред Леви описал эффект «зимней депрессии», которую сейчас квалифицируют как заболевание и называют сокращенно SAD (Seasonal Affective Disorders). Заболевание связано с недостаточной инсоляцией, то есть естественным освещением. По оценкам специалистов, синдрому SAD подтверждено ~ 10-12 % населения земли и прежде всего жители стран Северного полушария. Известны данные по США: в Нью-Йорке — 17 %, на Аляске — 28 %, даже во Флориде — 4 %. По странам Северной Европы данные колеблются от 10 до 40 %.

В связи с тем, что SAD является, бесспорно, одним из проявлений «солнечной недостаточности», неизбежен возврат интереса к так называемым лампам «полного спектра», достаточно точно воспроизводящим спектр естественного света не только в видимой, но и в УФ области.

Ряд зарубежных фирм включило ЛЛ полного спектра в свою номенклатуру, например, фирмы Osram и Radium выпускают подобные УФ ИИ мощностью 18, 36 и 58 Вт под названиями, соответственно, «Biolux» и «Biosun», спектральные характеристик которых практически совпадают.

Эти лампы, естественно, не обладают «антирахитным эффектом», но помогают устранять у людей ряд неблагоприятных синдромов, связанных с ухудшением здоровья в осенне-зимний период и могут также использоваться в профилактических целях в ОУ школ, детских садов, предприятий и учреждений для компенсации «светового голодания». При этом необходимо напомнить, что ЛЛ «полного спектра» по сравнению c ЛЛ цветности ЛБ имеют световую отдачу примерно на 30 % меньше, что неизбежно приведет к увеличению энергетических и капитальных затрат в осветительно-облучательной установке. Проектирование и эксплуатация подобных установок должны осуществляться с учетом требований стандарта CTES 009/E:2002 «Фотобиологическая безопасность ламп и ламповых систем».

  • Весьма рациональное применение найдено УФЛЛ, спектр излучения которых совпадает со спектром действия фототаксиса некоторых видов летающих насекомых-вредителей (мух, комаров, моли и т. д.), которые могут являться переносчиками заболеваний и инфекций, приводить к порче продуктов и изделий.

Эти УФ ЛЛ используются в качестве ламп-аттрактантов в специальных устройствах-светоловушках, устанавливаемых в кафе, ресторанах, на предприятиях пищевой промышленности, в животноводческих и птицеводческих хозяйствах, складах одежды и пр.

  • Ртутно-кварцевая лампа
  • Люминесцентные лампы «дневного света» (имеют небольшую УФ-составляющую из ртутного спектра)
  • Эксилампа
  • Светодиод

Лазерные источники

Существует ряд лазеров, работающих в ультрафиолетовой области. Лазер позволяет получать когерентное излучение высокой интенсивности.

Однако область ультрафиолета сложна для лазерной генерации, поэтому здесь не существует столь же мощных источников, как в видимом и инфракрасном диапазонах.

Ультрафиолетовые лазеры находят своё применение в мacc-спектрометрии, лазерной микродиссекции, биотехнологиях и других научных исследованиях.

В качестве активной среды в ультрафиолетовых лазерах могут использоваться либо газы (например, аргонный лазер, азотный лазер и др.), конденсированные инертные газы, специальные кристаллы, органические сцинтиллятор, либо свободные электроны, распространяющиеся в ондуляторе.

В 2010 году был впервые продемонстрирован лазер на свободных электронах, генерирующий когерентные фотоны с энергией 10 эВ (соответствующая длина волны — 124 нм), то есть в диапазоне вакуумного ультрафиолета.

Источник: https://www.sites.google.com/site/sergkraskaa/elektromagnitnye-volny/ultrafioletovoe-izlucenie

Ультрафиолетовое излучение – его польза и вред часть 1

Длина волны ультрафиолетовых лучей равна

Здравствуйте уважаемые подписчики и гости моего канала! В этом материале я хочу поднять очень интересную и важную тему ультрафиолетового излучения и совместными усилиями разобраться, в каких моментах ультрафиолет вреден, а в каких он полезен. Итак, давайте начнем.

Ультрафиолетовая лампа в действии

Что такое ультрафиолет

Для начала давайте дадим краткое определение, что же такое ультрафиолетовое излучение. Итак, ультрафиолет – это электромагнитное излучение, которое лежит в диапазоне между видимым и рентгеновским спектром.

При этом длины волн ультрафиолета находятся в пределах от 10 до 400 нм.

Источники ультрафиолета

Итак, вы уже поняли, что ультрафиолет – это часть излучаемого спектра и получается, что естественный источник света – это наше с вами Солнце.

Помните детскую считалку: Каждый Охотник Желает Знать, Где Сидит Фазан.

Но видимый нашим глазом солнечный свет – это всего лишь небольшая часть излучения и большую занимает невидимый спектр.

Из невидимого спектра 53% спектра занимает инфракрасное излучение, которое мы с вами все ощущаем как тепло.

С другой стороны спектра (сразу за «Фазаном») как раз и прячется наш герой – ультрафиолетовое излучение, которое в дальнейшем переходит в рентгеновское излучение.

Наш человеческий глаз не воспринимает такое излучение, а вот некоторые насекомые вполне способны на это. Например, пчелы видят цветки именно так.

Так выглядят цветы через УФ-фильтр

Разновидности ультрафиолета и его влияние

Ультрафиолетовое излучение можно разделить на три подкласса, а именно:

  • Жесткий ультрафиолет (коротковолновый спектр «С») UVC – длина волны от 100 до 280 нм. Это излучение просто стерилизует все вокруг. Благо, что от него нас с вами защищает озоновый слой.

Коротковолновый диапазон

  • Средний Ультрафиолет (спектр «В») UVB – длина волны от 280 до 315 нм. Данное излучение частично блокируется Озоновым слоем и так же активно поглощают облака (при их наличии конечно).

Средневолновый диапазон

Именно данный вид УФ, проникая через кожный покров, запускает выработку важного витамина D и отвечает за наш с вами летний загар (которым мы потом хвастаемся перед коллегами).

  • Длинноволновый УФ (его еще так же называют мягким УФ (спектр «А»)) UVA – длина волны от 315 до 400 нм. Для данного вида излучения, также называемого “черным светом” просто не существует преград.

Итак, теперь давайте разберемся, как влияет ультрафиолетовое излучение.

Ускоренное старение и ультрафиолет

Излучение типа UVA оказывает непосредственное влияние на скорость старения материалов. Именно такое излучение буквально разрушает галогеновые волокна в коже, из-за чего она теряет свою эластичность и у нас появляются морщины.

УФ одна из причин возникновения машин

Так же вспомните старые рекламные баннеры. Вы думаете они выцвели из-за ветра или дождя? Ан нет, главный виновник именно ультрафиолет. Его воздействие и разрушает материал.

Причем это относится не только к баннерам. Если проложить кабель, не предназначенный для наружной прокладки, и не защитить его, например, специальной гофрой, то изоляция буквально разрушится за пару лет.

Растрескавшаяся изоляция на солнце

Но не все так однозначно и ультрафиолет – это не абсолютное зло.

Положительные аспекты ультрафиолетового излучения

Кроме негатива и разрушительных свойств ультрафиолет так же несет и пользу. Давайте поговорим о его положительных сторонах:

  • Итак, немного повторюсь, но лучи спектра «В» (UVB) отвечают за выработку витамина Д, повышающий наш с вами иммунитет и отвечающий за крепость костей.
  • Кроме этого разрушительные лучи UVC так же используют во благо и с помощью них производят дезинфекции в больницах, очистных сооружениях и т. д.
  • Кроме этого если вы в доме держите рептилий в качестве домашних животных, то для их здорового роста так же необходим ультрафиолет.
  • Любители соляриев так же должны сказать спасибо именно ультрафиолету. Именно он делает их шоколадными зимой. Но стоит быть предельно аккуратным, если не соблюсти дозировку излучения, то можно обгореть как уголек и при этом без каких-либо болевых ощущений.
  • Летом многие из нас пользуются защитными лампами от насекомых, так вот там так же применяется ультрафиолет.
  • Проверка денежных купюр так же осуществляется с помощью ультрафиолета с длиной волны 365 нм.

Специальные знаки на купюрах светятся в УФ

  • А сейчас прозвучит разоблачение века. Дорогие хозяйки! Именно ультрафиолетовое излучение позволяет только что постиранному белью буквально сиять белизной и чистотой. А все потому, что в порошок добавляется химический реагент, который поглощает УФ волны и переизлучает их уже в видимом спектре.

И получается это не белье стало как новое, а его просто заставили светиться в более ярком спектре и не более. Ловкость рук и никакого мошенничества.

Порошок с отбеливателем в ультрафиолете очень ярок

Заключение

Как видите нельзя сказать однозначно, что ультрафиолет – это зло или добро. При грамотном использовании – это самый активный и надежный помощник, а при безграмотном злейший враг.

Не забудьте подписаться, так как в следующих выпусках я расскажу вам о том, как грамотно защищаться от вредного воздействия лучей в современных реалиях, а так же где на нашей планете уже нельзя находиться без защитного костюма из-за крайне высокого уровня УФ.

Источник: https://zen.yandex.ru/media/energofiksik/ultrafioletovoe-izluchenie-ego-polza-i-vred-chast-1-5e1dcd078f011100ad29f8c4

Ультрафиолетовое излучение подтипы и воздействие на человека

Длина волны ультрафиолетовых лучей равна

Электромагнитный спектр ультрафиолетового излучения может быть по-разному поделен на подгруппы. Стандарт ISO по определению солнечного излучения (ISO-DIS-21348)[2] даёт следующие определения:

НаименованиеДлина волны в нанометрахКоличество энергии на фотонАббревиатура
Ближний400—300 нм3,10—4,13 эВNUV
Ультрафиолет А, длинноволновой диапазон400—315 нм3,10—3,94 эВUVA
Средний300—200 нм4,13—6,20 эВMUV
Ультрафиолет B, средневолновой315—280 нм3,94—4,43 эВUVB
Дальний200—122 нм6,20—10,2 эВFUV
Ультрафиолет С, коротковолновой280—100 нм4,43—12,4 эВUVC
Экстремальный121—10 нм10,2—124 эВEUV, XUV

Ближний ультрафиолетовый диапазон часто называют «чёрным светом», так как он не распознаётся человеческим глазом, но при отражении от некоторых материалов спектр переходит в область видимого излучения вследствие явления фотолюминесценции.

Для дальнего и экстремального диапазона часто используется термин «вакуумный» (VUV), в виду того, что волны этого диапазона сильно поглощаются атмосферой Земли.

Воздействие на здоровье человека УФ излучения

Биологические эффекты ультрафиолетового излучения в трёх спектральных участках существенно различны, поэтому биологи иногда выделяют, как наиболее важные в их работе, следующие диапазоны:

  • Ближний ультрафиолет, УФ-A лучи (UVA, 315—400 нм)
  • УФ-B лучи (UVB, 280—315 нм)
  • Дальний ультрафиолет, УФ-C лучи (UVC, 100—280 нм)

Практически весь УФ-C и приблизительно 90 % УФ-B поглощаются при прохождении солнечного света через земную атмосферу. Излучение из диапазона УФ-A достаточно слабо поглощается атмосферой. Поэтому радиация, достигающая поверхности Земли, в значительной степени содержит ближний ультрафиолет УФ-A и в небольшой доле — УФ-B.

Несколько позже в работах (О. Г. Газенко, Ю. Е. Нефёдов, Е. А. Шепелев, С. Н. Залогуев, Н. Е. Панфёрова, И. В. Анисимова) указанное специфическое действие излучения было подтверждено в космической медицине.

Профилактическое УФ облучение было введено в практику космических полётов наряду с Методическими указаниями (МУ) 1989 г. «Профилактическое ультрафиолетовое облучение людей (с применением искусственных источников УФ излучения)».

Оба документа являются надёжной базой дальнейшего совершенствования УФ профилактики.

Действие на кожу

Воздействие ультрафиолетового излучения на кожу, превышающее естественную защитную способность кожи к загару, приводит к ожогам.

Ультрафиолетовое излучение может приводить к образованию мутаций (ультрафиолетовый мутагенез). Образование мутаций, в свою очередь, может вызывать рак кожи, меланому кожи и преждевременное старение.

Действие на глаза

Ультрафиолетовое излучение средневолнового диапазона (280—315 нм) практически неощутимо для глаз человека и в основном поглощается эпителием роговицы, что при интенсивном облучении вызывает радиационное поражение — ожог роговицы (электроофтальмия).

Это проявляется усиленным слезотечением, светобоязнью, отёком эпителия роговицы, блефароспазмом. В результате выраженной реакции тканей глаза на ультрафиолет глубокие слои (строма роговицы) не поражаются т. к.

человеческий организм рефлекторно устраняет воздействие ультрафиолета на органы зрения, поражённым оказывается только эпителий. После регенерации эпителия зрение, в большинстве случаев, восстанавливается полностью.

Мягкий ультрафиолет длинноволнового диапазона (315—400 нм) воспринимается сетчаткой как слабый фиолетовый или серовато-синий свет, но почти полностью задерживается хрусталиком, особенно у людей среднего и пожилого возраста[3].

Пациенты, которым имплантировали искусственный хрусталик ранних моделей, начинали видеть ультрафиолет; современные образцы искусственных хрусталиков ультрафиолет не пропускают. Ультрафиолет коротковолнового диапазона (100—280 нм) может проникать до сетчатки глаза.

Так как ультрафиолетовое коротковолновое излучение обычно сопровождается ультрафиолетовым излучением других диапазонов, то при интенсивном воздействии на глаза гораздо ранее возникнет ожог роговицы (электроофтальмия), что исключит воздействие ультрафиолета на сетчатку по вышеуказанным причинам. В клинической офтальмологической практике основным видом поражения глаз ультрафиолетом является ожог роговицы (электроофтальмия).

Защита глаз

  • Для защиты глаз от вредного воздействия ультрафиолетового излучения используются специальные защитные очки, задерживающие до 100 % ультрафиолетового излучения и прозрачные в видимом спектре. Как правило, линзы таких очков изготавливаются из специальных пластмасс или поликарбоната.
  • Многие виды контактных линз также обеспечивают 100 % защиту от УФ-лучей (обратите внимание на маркировку упаковки).
  • Фильтры для ультрафиолетовых лучей бывают твердыми, жидкими и газообразными. Например, обычное стекло непрозрачно при λ < 320 нм[4]; в более коротковолновой области прозрачны лишь специальные сорта стекол (до 300—230 нм), кварц прозрачен до 214 нм, флюорит — до 120 нм. Для еще более коротких волн нет подходящего по прозрачности материала для линз объектива, и приходится применять отражательную оптику — вогнутые зеркала. Однако для столь короткого ультрафиолета непрозрачен уже и воздух, который заметно поглощает ультрафиолет, начиная с 180 нм.

Источник: https://www.spb-svet.ru/%D1%83%D0%BB%D1%8C%D1%82%D1%80%D0%B0%D1%84%D0%B8%D0%BE%D0%BB%D0%B5%D1%82%D0%BE%D0%B2%D0%BE%D0%B5-%D0%B8%D0%B7%D0%BB%D1%83%D1%87%D0%B5%D0%BD%D0%B8%D0%B5-%D0%BF%D0%BE%D0%B4%D1%82%D0%B8%D0%BF%D1%8B/

Механизм действия УФО

Длина волны ультрафиолетовых лучей равна

Ультрафиолетовое облучение (УФО) – не видимое глазом электромагнитное излучение в диапазоне длин волн от 400 до 10 нм. УФ-лучи имеют наименьшую длину проникновения в ткани – всего до 1 мм. Прямое влияние УФ-лучей ограничено поверхностными слоями облучаемых участков кожи и слизистых оболочек. Лучи проникают в ткани на глубину от 0,6-1мм и поглощаются эпидермисом.

Прямое действие вызывает денатурацию и последующую коагуляцию белка, что после его ферментативного расщепления приводит к образованию биологически активных веществ (гистамин, ацетилхолеин). Всасываясь в кровь, эти вещества оказывают вторичное действие на тонус сосудов, мышц, нервных рецепторов, обменные процессы.

Многообразие действия ультрафиолетовых лучей объясняет их жизненную необходимость для нормального протекания физиологических процессов. Под влиянием ультрафиолетовых лучей происходит превращение провитамина D в витамин D2 (эргокальциферол).

Ультрафиолетовая недостаточность приводит к повышению проницаемости сосудов, деминерализации костей, появлению кариеса, рахита у детей. Резко снижается устойчивость, работоспособность организма, нарушаются иммунобиологические процессы.

Бактерицидное действие ультрафиолетовых лучей связано с их прямым воздействием на белковые компоненты микроорганизмов, приводящим к их денатурации и гибели. Бактерицидное действие проявляется не только на поверхности, но и на глубине до 0,5 см.

Под длительным действием ультрафиолетовых лучей (от нескольких мин и более – в зависимости от типа кожи) через 12-24 часа в коже возникает эритема, которая сопровождается расширением сосудов, активизацией ферментативных и обменных процессов.

Далее происходит некробиоз клеток эпидермиса, которые отшелушиваются к 7–9 дню и замещаются молодыми клетками, образующимися с 3–4 дня после облучения, а кожа пигментируется.

На слизистой эти процессы происходят быстрее, что связано с обильным кровоснабжением этих тканей.

Механизмы лечебных эффектов ультрафиолетового облучения

При поглощении квантов ультрафиолетового излучения в коже протекают следующие фотохимические и фотобиологические реакции:

  • разрушение белковых молекул (фотолиз);
  • образование более сложных биологических молекул (фотобиосинтез);
  • образование биомолекул с новыми физико-химическими свойствами (фотоизомеризация);
  • образование биорадикалов.

Воздействие УФ-лучей вызывает образование фотоэритемы, спустя некоторый латентный (скрытый) период длительностью 2–48 часов.

Она проявляется покраснением кожи на облучаемом участке, легким зудом, небольшой припухлостью, затем постепенно угасает и через 2–3 дня сменяется пигментными пятнами коричневого цвета вследствие накопления в клетках кожи пигмента меланина.

Образование эритемы вызвано развитием асептического воспаления, своего рода легкого ожога кожи с реактивным расширением ее капилляров.

Коротковолновое ультрафиолетовое излучение (КУФ)

Использование ультрафиолетового излучения (180-280 нм) с лечебно-профилактической целью. В естественных условиях УФС-излучение (КУФ) практически полностью поглощается озоновым слоем атмосферы.

Существует два метода применения КУФ-излучения:

  • облучение слизистых оболочек и раневых поверхностей;
  • аутотрансфузия ультрафиолетом облученной крови (АУФОК).

Механизм лечебных эффектов

Бактерицидное, микоцидное и противовирусное действие ультрафиолетового излучения зависит от ряда обстоятельств. Более выраженным санирующим действием обладают короткие ультрафиолетовые лучи (254-265 нм).

Причинами гибели возбудителей являются летальные мутации, утрата молекул ДНК способности к репликации, нарушение процесса транскрипции. Ультрафиолетовое излучение разрушает так же токсины, например, дифтерийный, столбнячный, дизентерийный, брюшного тифа, золотистого стафилококка.

Коротковолновые ультрафиолетовые лучи вызывают в начальный период облучения кратковременный спазм капилляров с последующим более продолжительным расширением субкапиллярных вен. В результате на облученном участке формируется коротковолновая эритема красноватого цвета с синюшным оттенком.

Она развивается через несколько часов и исчезает в течение 1-2 суток.

Коротковолновое ультрафиолетовое облучение крови стимулирует клеточное дыхание ее форменных элементов, увеличивается ионная проницаемость мембран, повышается кислородная емкость крови, в крови появляются реакционно-активные радикалы и гидроперекиси, которые способны нейтрализовать токсические продукты, повышается бактерицидная активность крови, нормализуется свертывающая система крови и активируются трофо-метаболические процессы в тканях.

Лечебные эффекты

  • бактерицидный и микоцидный (для поверхностного облучения);
  • иммуностимулирующий, метаболический, коагулокоррегирующий (для ультрафиолетового облучения крови).

Показания

  • Острые и подострые воспалительные заболевания кожи, носоглотки (слизистых носа, миндалин), внутреннего уха;
  • раны с опасностью присоединения анаэробной инфекции;
  • туберкулез кожи.

Кроме них для АУФОК показаны:

  • гнойные воспалительные заболевания (абсцесс, карбункул, остеомиелит, трофические язвы);
  • ишемическая болезнь сердца;
  • бактериальный эндокардит;
  • гипертоническая болезнь I-II стадии;
  • пневмония;
  • хронический бронхит;
  • хронический гиперацидный гастрит;
  • язвенная болезнь;
  • острый сальпингоофорит;
  • хронический пиелонефрит;
  • нейродермит;
  • псориаз;
  • рожа;
  • сахарный диабет.

Противопоказания

Повышенная чувствительность кожи и слизистых к ультрафиолетовому излучению.

Для АУФОК противопоказаны:

  • порфирии;
  • тромбоцитопении;
  • психические заболевания;
  • гепато- и нефропатии;
  • каллезные язвы желудка и двенадцатиперстной кишки;
  • гипокоагулирующий синдром различной этиологии;
  • острое нарушение мозгового кровообращения;
  • острый период инфаркта миокарда.

Средневолновое ультрафиолетовое излучение (СУФ) 290-310нм

Механизмы лечебных эффектов

Максимальным эритемообразующим действием обладает средневолновое ультрафиолетовое излучение с длиной волны 297 нм.

Повторные ультрафиолетовые облучения активируют барьерную функцию кожи, понижают ее холодовую чувствительность и повышают резистентность к действию токсических веществ. Происходит активация адаптационно-трофической функции симпатической нервной системы и восстановление нарушенных процессов белкового, углеводного и липидного обмена в организме.

При локальном облучении происходит улучшение сократимости миокарда, что существенно уменьшает давление в малом круге кровообращения.

Средневолновое ультрафиолетовое излучение восстанавливает мукоцилиарный транспорт в слизистых оболочках трахеи и бронхов, стимулирует гемопоэз, кислотообразующую функцию желудка и выделительную способность почек.

Под действием ультрафиолетового излучения в эритемных дозах продукты фотодеструкции биомолекул инициируют Т-лимфоциты, что приводит к уменьшению инфильтрации и подавлению воспалительного процесса на экссудативной стадии.

Центральный механизм анальгетического действия средневолновых ультрафиолетовых лучей дополняется периферическими процессами локального облучения. Ультрафиолетовое облучение зон Захарьина-Геда приводит к выраженному уменьшению болевых ощущений в соответствующих внутренних органах.

Нарастание содержания биологически активных веществ и ряда медиаторов в первые 3-е суток после облучения сменяется компенсаторным увеличением активности эозинофилов и эндотелиоцитов.

В результате в крови и тканях нарастает содержание гистаминазы, простогландиндегидрогеназы и кининазы. Усиливается также активность ацетилхолинзстеразы и ферментов гидролиза тироксина.

Указанные процессы приводят к десенсибилизации организма к продуктам фотодеструкции белков и усиливают его защитные иммунобиологические реакции.

Лечебные эффекты

Витаминообразующий, трофостимулирующий, иммуномодулирующий (субэритемные дозы), противовоспалительный, анальгетический, десенсибилизирующий (эритемные дозы).

Механизмы лечебных эффектов

Длинноволновые ультрафиолетовые лучи стимулируют пролиферацию клеток эпидермиса с последующим образованием меланина в клетках 9 шиповидного слоя.

Это приводит к компенсаторной стимуляции синтеза АКТГ и других гормонов, участвующих в гуморальной регуляции.

Образующиеся при облучении продукты фотодеструкции белков стимулируют процессы, приводящие к пролиферации В-лимфоцитов, дегрануляции моноцитов и тканевых макрофагов, образованию иммуноглобулинов.

ДУФ-лучи оказывают слабое эритемообразующее действие. Их используют в ПУВА-терапии при лечении кожных заболеваний.

ДУФ-лучи, как и другие области УФ-излучения вызывают изменение функционального состояния ЦНС и ее высшего отдела коры головного мозга. За счет рефлекторной реакции улучшается кровообращение, усиливается секторная активность органов пищеварения и функциональное состояние почек.

ДУФ-лучи влияют на обмен веществ, прежде всего минеральный и азотный. Длинноволновое ультрафиолетовое облучение применяют также в установках для получения загара – соляриях.

Они содержат различное количество инфляционных рефлекторных ламп (мощностью 80-100 Вт) для загара тела и металло-галогенные лампы (мощностью 400 Вт) для загара лица.

Основные лечебные эффекты ДУФ-лучей:

  • пигментообразующий,
  • иммуностимулирующий и фотосенсибилизирующий.

Противопоказания

  • Острые противовоспалительные процессы;
  • заболевания печени и почек с выраженным нарушением их функций;
  • гипертиреоз;
  • повышенная чувствительность к ДУФ-излучениям.

Аппаратура

Источником УФ-излучения для лечебного применения являются газоразрядные лампы, изготовленные из кварцевого стекла, пропускающего УФ-лучи. По области излучаемого спектра облучатели разделяют на интегральные и селективные.

Интегральные облучатели испускают лучи полного УФ-спектра. Такими облучателями являются люминесцентные лампы высокого давления типа дуговых ртутно-кварцевых ламп (ДРТ) различной мощности, соответствующей цифровому индексу лампы.

Лампа представляет собой кварцевую трубку, в концы которой впаяны вольфрамовые электроды. Воздух из трубки выкачан, она заполнена парами ртути и небольшим количеством инертного газа аргона. При включении тока в парах ртути возникает дуговой разряд. Наличие аргона облегчает зажигание лампы.

Нормальный режим ее горения устанавливается через 10—15 мин после включения.

Спектр излучения ртутно-кварцевой лампы содержит большое количество УФ-лучей, а также видимый свет преимущественно синего и зеленого цвета и незначительное количество ИК-лучей.

Кварцевая лампа ОУФ 09-1 (КУФ -терапия)

Кварцевая лампа ОУФк 09-1 ГЗАС им. Попова – бактерицидный облучатель, предназначенный для кварцевания помещения и лечения простудных заболеваний.

Кварцевая лампа ОУФк 09-1 ГЗАС – бактерицидный облучатель с длиной волны 253,7 нанометров. Используется для локального облучения пациента, а также для общего облучения – обеззараживания помещения.

Кварцевая лампа ОУФ 09-1 ГЗАС им. Попова – характеристики:

  • Излучение лампы – 205-315 (253,7)нм;
  • Лампа в облучателе типа ДКБУ-9;
  • При проведении кварцевание облучаемая площадь до 30 кв.м.;

Аппарат планируется использовать для локальных и сегментарных методик по выездной программе и в лечебно-профилактических целях стационарно.

  • Методика на слизистые носа и ротоглотки от 30сек до 3-4мин по схеме, №3-5 еж или ч\д;
  • Методика на сегментарные зоны ладоней и стоп по 10 мин на поле 2 поля в день №3-5 еж или ч\д;
  • Можно сочетать воздействие на слизистые и рефлексогенные зоны ежедневно или ч\д;
  • Также можно сочетать с магнитосветотерапией и ДМВ-терапией или чередовать воздействие по показаниям.

Облучатель ОРК-021М применяется для общих и индивидуальных облучений как с лечебной, так и с профилактической целью. Ультрафиолетовое облучение, создаваемое лампой, повышает общую сопротивляемость организма, улучшает обмен веществ, понижает возбудимость нервных элементов кожи. В качестве источника ультрафиолетового излучения используется ртутно-кварцевая лампа ДРТ-400.

Аппарат планируется применять для облучения рефлексогенных зон (ладони и стопы) в стационарных условиях по 10 мин на поле ежедневно или ч\д.

Возможно применение сочетанных методик с облучением слизистых или сочетанное воздействие с применением ДМВ-терапии локально на область проекции миндалин еж. или ч\д.

Источник: https://viterramed.ru/departments/povysit-immunitet/mekhanizm-dejstviya-ufo

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.